打开/关闭菜单
打开/关闭个人菜单
未登录
未登录用户的IP地址会在进行任意编辑后公开展示。

不等式:修订间差异

来自高中笔记
MM 喵了个留言 | 贡献
MM 喵了个留言 | 贡献
无编辑摘要
第19行: 第19行:
所以,如要证明 <math>x \le a</math>, 只需证明 <math>x - a \le 0</math> 即可.
所以,如要证明 <math>x \le a</math>, 只需证明 <math>x - a \le 0</math> 即可.


= 重要不等式 =
= 特殊不等式 =


== 基本不等式 ==
== 基本不等式 ==


可由 <math>\sqrt{ab} < \frac{a + b}{2}, \; (a \neq b)</math> 得到.
对任意 <math>a, b \in R, a^2 + b^2 \ge 2ab</math>,当且仅当 <math>a = b</math> 时等号成立.


<math>a^2 + b^2 > 2ab \;(a \neq b)</math>
对任意正数 <math>a, b, \frac{a + b}{2} \ge \sqrt{ab}</math>,当且仅当 <math>a = b</math> 时等号成立.


== 糖水原理 ==
== 糖水原理 ==

2024年7月23日 (二) 22:36的版本

我们经常用不等式来研究含有不等关系的问题.

基本事实

如果 [math]\displaystyle{ a - b \gt 0 }[/math], 那么 [math]\displaystyle{ a \gt b }[/math]

如果 [math]\displaystyle{ a - b = 0 }[/math], 那么 [math]\displaystyle{ a = b }[/math]

如果 [math]\displaystyle{ a - b \lt 0 }[/math], 那么 [math]\displaystyle{ a \lt b }[/math]

反过来也成立. 即

[math]\displaystyle{ a \gt b \Leftrightarrow a - b \gt 0 }[/math]

[math]\displaystyle{ a = b \Leftrightarrow a - b = 0 }[/math]

[math]\displaystyle{ a \lt b \Leftrightarrow a - b \lt 0 }[/math]

所以,如要证明 [math]\displaystyle{ x \le a }[/math], 只需证明 [math]\displaystyle{ x - a \le 0 }[/math] 即可.

特殊不等式

基本不等式

对任意 [math]\displaystyle{ a, b \in R, a^2 + b^2 \ge 2ab }[/math],当且仅当 [math]\displaystyle{ a = b }[/math] 时等号成立.

对任意正数 [math]\displaystyle{ a, b, \frac{a + b}{2} \ge \sqrt{ab} }[/math],当且仅当 [math]\displaystyle{ a = b }[/math] 时等号成立.

糖水原理

向容器中加入 [math]\displaystyle{ a }[/math] 克水,[math]\displaystyle{ b }[/math] 克糖得到糖的溶液,

它的质量分数就是 [math]\displaystyle{ \frac {a}{a + b} }[/math].

再向容器中加入 [math]\displaystyle{ c }[/math] 克糖

得到质量分数为 [math]\displaystyle{ \frac{a+c}{a+b+c} }[/math] 的糖溶液

加入两次糖后的溶液更甜,即后者质量分数更大.

[math]\displaystyle{ \frac {a}{b} \lt \frac {a + c}{b + c} }[/math].

证明过程

其中,[math]\displaystyle{ a \gt b \gt 0, \; c \gt 0 }[/math].

作差证明:

[math]\displaystyle{ \frac {a}{b} - \frac {a + c}{b + c} = \frac {ab + bc - ab - ac}{a(a + c)} = \frac {bc - ac}{a(a + c)} = \frac {c(b - a)}{a(a + c)} \lt 0 }[/math]

所以 [math]\displaystyle{ \frac {a}{b} \lt \frac {a + c}{b + c} }[/math].