更多操作
小无编辑摘要 |
|||
第23行: | 第23行: | ||
== 基本不等式 == | == 基本不等式 == | ||
'''把不等式 <math>\frac{a + b}{2} \ge \sqrt{ab}(a > 0, \; b > 0)</math> 称为<big>基本不等式</big>.''' | '''把不等式 <math>\frac{a + b}{2} \ge \sqrt{ab}(a > 0, \; b > 0)</math> 称为<big>{{color|red|基本不等式}}</big>.''' | ||
对任意 <math>a, b \in R, a^2 + b^2 \ge 2ab</math>,当且仅当 <math>a = b</math> 时等号成立. | 对任意 <math>a, b \in R, a^2 + b^2 \ge 2ab</math>,当且仅当 <math>a = b</math> 时等号成立. | ||
第35行: | 第35行: | ||
# 已知 <math>x, \; y</math> 都为正数,那么当且仅当 <math>x = y</math> 时,和 <math>x + y</math>有最小值 <math>2 \sqrt{p}</math>; | # 已知 <math>x, \; y</math> 都为正数,那么当且仅当 <math>x = y</math> 时,和 <math>x + y</math>有最小值 <math>2 \sqrt{p}</math>; | ||
# 如果 <math>x + y</math> 是定值 <math>s</math>,那么当且仅当 <math>x = y</math> 时,积 <math>xy</math> 有最大值 <math>\frac{s^2}{4}</math>. | # 如果 <math>x + y</math> 是定值 <math>s</math>,那么当且仅当 <math>x = y</math> 时,积 <math>xy</math> 有最大值 <math>\frac{s^2}{4}</math>. | ||
由此可总结出: | |||
当两个{{color|red|正数}}变量的{{color|blue|积}}或{{color|orange|和}}为{{color|red|定值}}时,他们的{{color|blue|和有最小值}}或{{color|orange|积有最大值}} | |||
== 糖水原理 == | == 糖水原理 == |
2024年7月30日 (二) 15:26的版本
我们经常用不等式来研究含有不等关系的问题.
基本事实
如果 [math]\displaystyle{ a - b \gt 0 }[/math], 那么 [math]\displaystyle{ a \gt b }[/math]
如果 [math]\displaystyle{ a - b = 0 }[/math], 那么 [math]\displaystyle{ a = b }[/math]
如果 [math]\displaystyle{ a - b \lt 0 }[/math], 那么 [math]\displaystyle{ a \lt b }[/math]
反过来也成立. 即
[math]\displaystyle{ a \gt b \Leftrightarrow a - b \gt 0 }[/math]
[math]\displaystyle{ a = b \Leftrightarrow a - b = 0 }[/math]
[math]\displaystyle{ a \lt b \Leftrightarrow a - b \lt 0 }[/math]
所以,如要证明 [math]\displaystyle{ x \le a }[/math], 只需证明 [math]\displaystyle{ x - a \le 0 }[/math] 即可.
特殊不等式
基本不等式
把不等式 [math]\displaystyle{ \frac{a + b}{2} \ge \sqrt{ab}(a \gt 0, \; b \gt 0) }[/math] 称为基本不等式.
对任意 [math]\displaystyle{ a, b \in R, a^2 + b^2 \ge 2ab }[/math],当且仅当 [math]\displaystyle{ a = b }[/math] 时等号成立.
对任意正数 [math]\displaystyle{ a, b, \frac{a + b}{2} \ge \sqrt{ab} }[/math],当且仅当 [math]\displaystyle{ a = b }[/math] 时等号成立.
一般地,对于正数 [math]\displaystyle{ a,\; b }[/math],我们把 [math]\displaystyle{ \frac{a + b}{2} }[/math] 称为 [math]\displaystyle{ a,\; b }[/math] 的算数平均数,[math]\displaystyle{ \sqrt{ab} }[/math] 称为 [math]\displaystyle{ a,\; b }[/math] 的几何平均数.
拓展结论
- 已知 [math]\displaystyle{ x, \; y }[/math] 都为正数,那么当且仅当 [math]\displaystyle{ x = y }[/math] 时,和 [math]\displaystyle{ x + y }[/math]有最小值 [math]\displaystyle{ 2 \sqrt{p} }[/math];
- 如果 [math]\displaystyle{ x + y }[/math] 是定值 [math]\displaystyle{ s }[/math],那么当且仅当 [math]\displaystyle{ x = y }[/math] 时,积 [math]\displaystyle{ xy }[/math] 有最大值 [math]\displaystyle{ \frac{s^2}{4} }[/math].
由此可总结出:
当两个正数变量的积或和为定值时,他们的和有最小值或积有最大值
糖水原理
向容器中加入 [math]\displaystyle{ a }[/math] 克水,[math]\displaystyle{ b }[/math] 克糖得到糖的溶液,
它的质量分数就是 [math]\displaystyle{ \frac {a}{a + b} }[/math].
再向容器中加入 [math]\displaystyle{ c }[/math] 克糖,
得到质量分数为 [math]\displaystyle{ \frac{a+c}{a+b+c} }[/math] 的糖溶液.
加入两次糖后的溶液更甜,即后者质量分数更大.
即
[math]\displaystyle{ \frac {a}{b} \lt \frac {a + c}{b + c} }[/math].
证明过程
其中,[math]\displaystyle{ a \gt b \gt 0, \; c \gt 0 }[/math].
作差证明:
[math]\displaystyle{ \frac {a}{b} - \frac {a + c}{b + c} = \frac {ab + bc - ab - ac}{a(a + c)} = \frac {bc - ac}{a(a + c)} = \frac {c(b - a)}{a(a + c)} \lt 0 }[/math]
所以 [math]\displaystyle{ \frac {a}{b} \lt \frac {a + c}{b + c} }[/math].