打开/关闭菜单
打开/关闭个人菜单
未登录
未登录用户的IP地址会在进行任意编辑后公开展示。

不等式:修订间差异

来自高中笔记
MM 喵了个留言 | 贡献
无编辑摘要
MM 喵了个留言 | 贡献
 
(未显示2个用户的29个中间版本)
第1行: 第1行:
我们经常用不等式来研究含有不等关系的问题.
我们经常用'''不等式'''来研究含有不等关系的问题.


== 基本事实 ==
== 基本事实 ==
第19行: 第19行:
所以,如要证明 <math>x \le a</math>, 只需证明 <math>x - a \le 0</math> 即可.
所以,如要证明 <math>x \le a</math>, 只需证明 <math>x - a \le 0</math> 即可.


= 特殊不等式 =
== 基本不等式 ==


== 基本不等式 ==
'''把不等式 <math>\frac{a + b}{2} \ge \sqrt{ab}(a > 0, \; b > 0)</math> 称为<big>{{color|red|基本不等式}}</big>.'''


对任意 <math>a, b \in R, a^2 + b^2 \ge 2ab</math>,当且仅当 <math>a = b</math> 时等号成立.
对任意 <math>a, b \in R, a^2 + b^2 \ge 2ab</math>,当且仅当 <math>a = b</math> 时等号成立.


对任意正数 <math>a, b, \frac{a + b}{2} \ge \sqrt{ab}</math>,当且仅当 <math>a = b</math> 时等号成立.
对任意正数 <math>a, b, \frac{a + b}{2} \ge \sqrt{ab}</math>,当且仅当 <math>a = b</math> 时等号成立.
一般地,对于正数 <math>a,\; b</math>,我们把 <math>\frac{a + b}{2}</math> 称为 <math>a,\; b</math> 的'''算术平均数''',<math>\sqrt{ab}</math> 称为 <math>a,\; b</math> 的'''几何平均数'''.
=== 拓展结论 ===
# 已知 <math>x, \; y</math> 都为正数,如果 <math>xy</math> 等于定值 <math>P</math>,那么当且仅当 <math>x = y</math> 时,和 <math>x + y</math>有最小值 <math>2 \sqrt{p}</math>;
# 如果 <math>x + y</math> 是定值 <math>s</math>,那么当且仅当 <math>x = y</math> 时,积 <math>xy</math> 有最大值 <math>\frac{s^2}{4}</math>.
由此可总结出:
当两个{{color|red|正数}}变量的{{color|blue|积}}或{{color|orange|和}}为{{color|red|定值}}时,他们的{{color|blue|和有最小值}}或{{color|orange|积有最大值}}


== 糖水原理 ==
== 糖水原理 ==


向容器中加入 <math>a</math> 克水,<math>b</math> 克糖得到糖的溶液,
<math>a</math> 克糖水中有 <math>b</math> 克糖,


它的质量分数就是 <math>\frac {a}{a + b}</math>.
它的质量分数就是 <math>\frac {b}{a}</math>.


再向容器中加入 <math>c</math> 克糖
再向容器中加入 <math>c</math> 克糖,


得到质量分数为 <math>\frac{a+c}{a+b+c}</math> 的糖溶液
得到质量分数为 <math>\frac{b+c}{a+c}</math> 的糖溶液.


加入两次糖后的溶液更甜,即后者质量分数更大.  
加入两次糖后的溶液更甜,即'''后者'''质量分数更大.  




<math>\frac {a}{b} < \frac {a + c}{b + c}</math>.
<math>\frac {b}{a} < \frac {b + c}{a + c}</math>.


=== 证明过程 ===
=== 证明过程 ===
第49行: 第60行:
作差证明:
作差证明:


<math>\frac {a}{b} - \frac {a + c}{b + c} = \frac {ab + bc - ab - ac}{a(a + c)} = \frac {bc - ac}{a(a + c)} = \frac {c(b - a)}{a(a + c)} < 0</math>
<math>\frac {b}{a} - \frac {b + c}{a + c} = \frac {ab + bc - ab - ac}{a(a + c)} = \frac {bc - ac}{a(a + c)} = \frac {c(b - a)}{a(a + c)} < 0</math>
 
所以 <math>\frac {b}{a} < \frac {b + c}{a + c}</math>.
 
== 一元二次不等式 ==
 
=== 与二次函数的关系 ===
{| class="wikitable"
|+
!
!<math>\Delta > 0</math>
!<math>\Delta = 0</math>
!<math>\Delta < 0</math>
|-
!<math>y = ax^2 + bx + c \quad (a > 0)</math> 的图象
|[[文件:Delta大于0.png|缩略图|140px|此时与x轴有两个交点]]
|[[文件:Delta等于0.png|缩略图|140px|此时图像与x轴有且仅有一个交点(或有两个相同的实数解)]]
|[[文件:Delta小于0.png|缩略图|140px|此时与x轴没有交点]]
|-
!<math>ax^2 + bx + c = 0 \quad (a > 0)</math> 的根
|有两个不相等的实数根 <math>x_1, x_2 \quad (x_1 < x_2)</math>
|有两个相等的实数根 <math>x_1 = x_2 = -\frac{b}{2a}</math>
|没有实数根
|-
!<math>ax^2 + bx + c > 0 \quad (a > 0)</math> 的解集
|<math>\{x \mid x < x_1 \text{ 或 } x > x_2\}</math>
|<math>\{x \mid x \neq -\frac{b}{2a}\}</math>
|<math>\mathbb{R}</math>
|-
!<math>ax^2 + bx + c < 0 \quad (a > 0)</math> 的解集
|<math>\{x \mid x_1 < x < x_2\}</math>
|<math>\emptyset</math>
|<math>\emptyset</math>
|}
 
== 一元二次方程根的分布/二次函数的零点分布(卡根法) ==
{| class="wikitable"
|+两根与 0 的大小比较即根的正负情况(表一)
!分布情况
!两个负根 即两根都小于 0
<math>(x_1 < 0, x_2 < 0)</math>
!两个正根 即两根都大于 0
!一正根一负根 即一根小于 0,一根大于 0
|-
!大致图象 <math>(a>0)</math>
|<图象>
|<图象>
|<图象>
|-
!得出的结论
|
|
|
|}
{| class="wikitable"
|+两根与 0 的大小比较即根的正负情况(表二)
!分布情况
!两个负根 即两根都小于 0
!两个正根 即两根都大于 0
!一正根一负根 即一根小于 0,一根大于 0
|-
!大致图象 (a<0)
|<图象>
|<图象>
|<图象>
|-
!得出的结论
|
|
|
|}
 
 
= 例题 =
== 基本不等式 ==
=== 用一段长为 <math>36\,\text{m}</math> 的篱笆围成一个矩形菜园.===
# 当这个矩形的边长为多少时,所用篱笆最短?最短篱笆的长度是多少?
# 当这个矩形的边长为多少时,菜园的面积最大?最大面积是多少?
 
解:设矩形菜园的相邻两条边的长分别为 <math>x\,\text{m}, y\,\text{m}</math>,则篱笆的长度为 <math>2(x + y)\,\text{m}</math>.
 
1.
 
* 由已知,得 <math>xy = 100</math>,
* 根据基本不等式 <math>\frac{x + y}{2} \geq \sqrt{xy}</math>,
* 可得 <math>x + y \geq 2\sqrt{xy} = 2\sqrt{100} = 20</math>,
* 所以,<math>2(x + y) \geq 40</math>
* 当且仅当 <math>x = y = 10</math> 时,上式等号成立.
* 因此,当这个矩形菜园是边长为 <math>10\,\text{m}</math> 的正方形时,所用篱笆最短,最短篱笆的长度为 <math>40\,\text{m}</math>.
 
2.


所以 <math>\frac {a}{b} < \frac {a + c}{b + c}</math>.
* 由已知,得 <math>2(x + y) = 40</math>,矩形菜园的面积为 <math>xy\,\text{m}^2</math>.
* 根据基本不等式可得 <math>\sqrt{xy} \leq \frac{x + y}{2} = \frac{18}{2} = 9</math>,
* 所以,<math>xy \leq 81</math>.
* 当且仅当 <math>x = y = 9</math> 时,上式等号成立.
* 因此,当这个矩形菜园时边长为 <math>9\,\text{m}</math> 的正方形时,菜园面积最大,最大面积是 <math>81\,\text{m}^2</math>.


[[分类:数学]]
[[分类:代数]]